

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

How to contribute

CsvView loves to welcome your contributions. There are several ways to help out:

	Create a ticket in GitHub, if you have found a bug

	Write testcases for open bug tickets

	Write patches for open bug/feature tickets, preferably with testcases included

	Contribute to the documentation [https://github.com/friendsofcake/cakephp-csvview/tree/gh-pages]

There are a few guidelines that we need contributors to follow so that we have a
chance of keeping on top of things.

Getting Started

	Make sure you have a GitHub account [https://github.com/signup/free]

	Submit a ticket for your issue, assuming one does not already exist.

	Clearly describe the issue including steps to reproduce when it is a bug.

	Make sure you fill in the earliest version that you know has the issue.

	Fork the repository on GitHub.

Making Changes

	Create a topic branch from where you want to base your work.

	This is usually the develop branch

	To quickly create a topic branch based on master; git branch master/my_contribution master then checkout the new branch with git checkout master/my_contribution. Better avoid working directly on the
master branch, to avoid conflicts if you pull in updates from origin.

	Make commits of logical units.

	Check for unnecessary whitespace with git diff --check before committing.

	Use descriptive commit messages and reference the #ticket number

	Core testcases should continue to pass. You can run tests locally or enable
travis-ci [https://travis-ci.org/] for your fork, so all tests and codesniffs
will be executed.

	Your work should apply the CakePHP coding standards.

Which branch to base the work

	Bugfix branches will be based on develop branch.

	New features that are backwards compatible will be based on develop branch

	New features or other non-BC changes will go in the next major release branch.

Submitting Changes

	Push your changes to a topic branch in your fork of the repository.

	Submit a pull request to the repository with the correct target branch.

Testcases and codesniffer

CsvView tests requires PHPUnit [http://www.phpunit.de/manual/current/en/installation.html]
8.5 or higher. To run the testcases locally use the following command:

composer test

To run the sniffs for CakePHP coding standards

composer cs-check

Check the cakephp-codesniffer [https://github.com/cakephp/cakephp-codesniffer]
repository to setup the CakePHP standard. The README contains installation info
for the sniff and phpcs.

Additional Resources

	CakePHP coding standards [http://book.cakephp.org/4/en/contributing/cakephp-coding-conventions.html]

	Bug tracker [https://github.com/friendsofcake/cakephp-csvview/issues]

	General GitHub documentation [https://help.github.com/]

	GitHub pull request documentation [https://help.github.com/send-pull-requests/]

	#cakephp IRC channel on freenode.org

 [image: https://img.shields.io/travis/FriendsOfCake/cakephp-csvview/master.svg?style=flat-square]Build Status [https://travis-ci.org/FriendsOfCake/cakephp-csvview]
[image: https://img.shields.io/codecov/c/github/FriendsOfCake/cakephp-csvview.svg?style=flat-square]Coverage Status [https://codecov.io/gh/FriendsOfCake/cakephp-csvview]
[image: https://img.shields.io/packagist/dt/friendsofcake/cakephp-csvview.svg?style=flat-square]Total Downloads [https://packagist.org/packages/friendsofcake/cakephp-csvview]
[image: https://img.shields.io/packagist/v/friendsofcake/cakephp-csvview.svg?style=flat-square]Latest Stable Version [https://packagist.org/packages/friendsofcake/cakephp-csvview]
[image: https://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat-square]Software License

CsvView Plugin

Quickly enable CSV output of your model data.

Background

I needed to quickly export CSVs of stuff in the database. Using a view class to
iterate manually would be a chore to replicate for each export method, so I
figured it would be much easier to do this with a custom view class,
like JsonView or XmlView.

Installation

composer require friendsofcake/cakephp-csvview

Enable plugin

Load the plugin by running command

bin/cake plugin load CsvView

Usage

To export a flat array as a CSV, one could write the following code:

public function export()
{
 $data = [
 ['a', 'b', 'c'],
 [1, 2, 3],
 ['you', 'and', 'me'],
];

 $this->set(compact('data'));
 $this->viewBuilder()
 ->setClassName('CsvView.Csv')
 ->setOption('serialize', 'data');
}

All variables that are to be included in the csv must be specified in the
serialize view option, exactly how JsonView or XmlView work.

It is possible to have multiple variables in the csv output:

public function export()
{
 $data = [['a', 'b', 'c']];
 $data_two = [[1, 2, 3]];
 $data_three = [['you', 'and', 'me']];

 $serialize = ['data', 'data_two', 'data_three'];

 $this->set(compact('data', 'data_two', 'data_three'));
 $this->viewBuilder()
 ->setClassName('CsvView.Csv')
 ->setOption('serialize', $serialize);
}

If you want headers or footers in your CSV output, you can specify either a
header or footer view option. Both are completely optional:

public function export()
{
 $data = [
 ['a', 'b', 'c'],
 [1, 2, 3],
 ['you', 'and', 'me'],
];

 $header = ['Column 1', 'Column 2', 'Column 3'];
 $footer = ['Totals', '400', '$3000'];

 $this->set(compact('data'));
 $this->viewBuilder()
 ->setClassName('CsvView.Csv')
 ->setOptions([
 'serialize' => 'data',
 'header' => $header,
 'footer' => $footer,
]);
}

You can also specify the delimiter, end of line, newline, escape characters and
byte order mark (BOM) sequence using delimiter, eol, newline, enclosure
and bom respectively:

public function export()
{
 $data = [
 ['a', 'b', 'c'],
 [1, 2, 3],
 ['you', 'and', 'me'],
];

 $this->set(compact('data'));
 $this->viewBuilder()
 ->setClassName('CsvView.Csv')
 ->setOptions([
 'serialize' => 'data',
 'delimiter' => chr(9),
 'enclosure' => '"',
 'newline' => '\r\n',
 'eol' => '~',
 'bom' => true,
]);
}

The defaults for these options are:

	delimiter: ,

	enclosure: "

	newline: \n

	eol: \n

	bom: false

	setSeparator: false

The eol option is the one used to generate newlines in the output.
newline, however, is the character that should replace the newline characters
in the actual data. It is recommended to use the string representation of the
newline character to avoid rendering invalid output.

Some reader software incorrectly renders UTF-8 encoded files which do not
contain byte order mark (BOM) byte sequence. The bom option is the one used
to add byte order mark (BOM) byte sequence beginning of the generated CSV output
stream. See Wikipedia article about byte order mark [http://en.wikipedia.org/wiki/Byte_order_mark]
for more information.

The setSeparator option can be used to set the separator explicitly in the
first line of the CSV. Some readers need this in order to display the CSV correctly.

If you have complex model data, you can use the extract view option to
specify the individual Hash::extract()-compatible [http://book.cakephp.org/4/en/core-libraries/hash.html] paths
or a callable for each record:

public function export()
{
 $posts = $this->Posts->find();
 $header = ['Post ID', 'Title', 'Created'];
 $extract = [
 'id',
 function (array $row) {
 return $row['title'];
 },
 'created'
];

 $this->set(compact('posts'));
 $this->viewBuilder()
 ->setClassName('CsvView.Csv')
 ->setOptions([
 'serialize' => 'posts',
 'header' => $header,
 'extract' => $extract,
]);
}

If your model data contains some null values or missing keys, you can use the
null option, just like you’d use delimiter, eol, and enclosure,
to set how null values should be displayed in the CSV.

null defaults to ''.

Automatic view class switching

You can use router’s extension parsing feature and the RequestHandlerComponent to
automatically have the CsvView class switched in as follows.

Enable csv extension parsing for all routes using Router::extensions('csv')
in your app’s routes.php or using $routes->addExtensions() within required
scope.

// PostsController.php

// In your controller's initialize() method:
$this->loadComponent('RequestHandler');

// Controller action
public function index()
{
 $posts = $this->Posts->find();
 $this->set(compact('posts'));

 if ($this->request->is('csv')) {
 $serialize = 'posts';
 $header = array('Post ID', 'Title', 'Created');
 $extract = array('id', 'title', 'created');

 $this->viewBuilder()->setOptions(compact('serialize', 'header', 'extract'));
 }
}

With the above controller you can now access /posts.csv or use Accept header
text/csv to get the data as csv and use /posts to get normal HTML page.

For really complex CSVs, you can also use your own view files. To do so, either
leave serialize unspecified or set it to null. The view files will be located
in the csv subdirectory of your current controller:

// View used will be in templates/Posts/csv/export.php
public function export()
{
 $posts = $this->Posts->find();
 $this->set(compact('posts'));
 $this->viewBuilder()
 ->setClassName('CsvView.Csv')
 ->setOption('serialize', null);
}

Setting a different encoding to the file

If you need to have a different encoding in you csv file you have to set the
encoding of your data you are passing to the view and also set the encoding you
want for the csv file. This can be done by using dataEncoding and csvEncoding:

The defaults are:

	dataEncoding: UTF-8

	csvEncoding: UTF-8

** Only if those two variable are different your data will be converted to another encoding.

CsvView uses the iconv extension by default to encode your data. You can change
the php extension used to encode your data by setting the transcodingExtension option:

$this->viewBuilder()->setOption('transcodingExtension', 'mbstring');

The currently supported encoding extensions are as follows:

	iconv

	mbstring

Setting the downloaded file name

By default, the downloaded file will be named after the last segment of the URL
used to generate it. Eg: example.com/my-controller/my-action would download
my-action.csv, while example.com/my-controller/my-action/first-param would
download first-param.csv.

In IE you are required to set the filename, otherwise it will download as a text file.

To set a custom file name, use the Response::withDownload() method. The following
snippet can be used to change the downloaded file from export.csv to my-file.csv:

public function export()
{
 $data = [
 ['a', 'b', 'c'],
 [1, 2, 3],
 ['you', 'and', 'me'],
];

 $this->setResponse($this->getResponse()->withDownload('my-file.csv'));
 $this->set(compact('data'));
 $this->viewBuilder()
 ->setClassName('CsvView.Csv')
 ->setOption('serialize', 'data');
}

Using a specific View Builder

In some cases, it is better not to use the current controller’s View Builder
$this->viewBuilder() as any call to $this->render() will compromise any
subsequent rendering.

For example, in the course of your current controller’s action, if you need to
render some data as CSV in order to simply save it into a file on the server.

Do not forget to add to your controller:

use Cake\View\ViewBuilder;

So you can create a specific View Builder:

// Your data array
$data = [];

// Options
$serialize = 'data';
$delimiter = ',';
$enclosure = '"';
$newline = '\r\n';

// Create the builder
$builder = new ViewBuilder();
$builder
 ->setLayout(false)
 ->setClassName('CsvView.Csv')
 ->setOptions(compact('serialize', 'delimiter', 'enclosure', 'newline'));

// Then the view
$view = $builder->build($data);
$view->set(compact('data'));

// And Save the file
file_put_contents('/full/path/to/file.csv', $view->render());

License

The MIT License (MIT)

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

